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Abstract

In this work we establish several results on distinguishing Siegel cusp forms of degree two.
In particular, a Hecke eigenform of level one can be determined by its second Hecke eigenvalue
under a certain assumption. Moreover, we can also distinguish two Hecke eigenforms of level
one by using L-functions.
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1 Introduction

One of the fundamental problems in the theory of automorphic forms is whether we can distinguish
them by a set of eigenvalues. In the elliptic modular forms case, this kind of question has been
well studied. Particularly, in this case the question is equivalent to ask that how many Fourier
coefficients are sufficient in order to determine an elliptic modular form. This was answered first in
the context of congruences modulo a prime by Sturm [Stu87]. Later, Ghitza [Ghi11] gave a stronger
result by considering two cuspidal Hecke eigenforms of distinct weights, which improved the result
by Ram Murty [Mur97]. Recently, Vilardi and Xue [VX18] gave an even stronger result for two
eigenforms of level one under certain assumptions.

However, distinguishing Siegel cusp forms was a long-standing unanswered problem and only
recently Schmidt [Sch18], in a remarkable paper, gave an affirmative answer to this question for
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normalized eigenvalues of a Siegel cuspidal eigenform of degree two. This result has been improved
by Kumar, Meher and Shankhadhar [KMS21], in which they essentially showed that any set of
eigenvalues (normalized or non-normalized) at primes p of positive upper density are sufficient
to determine the Siegel cuspidal eigenform. In this work we further investigate the question on
distinguishing Siegel cusp forms of degree two from various aspects with several improved results.

Let Sk(Γ0(N)) be the space of Siegel cusp form of level Γ0(N) and weight k, where Γ0(N) is the
Siegel congruence subgroup of level N defined as in (7). Let F ∈ Sk(Γ0(N)) be a Hecke eigenform
with eigenvalue λF (n) for (n,N) = 1. Then our first main result is as follows.

Theorem 1.1. Let k1, k2 be distinct positive integers larger than 2. Let F ∈ Sk1(Γ0(N)) and
G ∈ Sk2(Γ0(N)) be Hecke eigenforms. Then we can find n satisfying

n ≤ (2 logN + 2)4

such that λF (n) 6= λG(n).

We remark that it was shown in [GS14, Corollary 5.3] that there exists some n satisfying
n ≤ (2 logN + 2)6 such that λF (n) 6= λG(n). In particular, we obtain an improved bound for n in
Theorem 1.1.

Next, we assume that N = 1, and let Γ2 = Sp(4,Z). It is well known that the space Sk(Γ2) has
a natural decomposition into orthogonal subspaces

Sk(Γ2) = S(P)
k (Γ2)⊕ S(G)

k (Γ2) (1)

with respect to the Petersson inner product. Here, S(P)
k (Γ2) is the subspace of Saito-Kurokawa

liftings, and S(G)
k (Γ2) is the subspace of non-liftings. We refer the reader to [Sch18, § 2.1] for

further comments related to this type decomposition. Then we can prove the following theorem:

Theorem 1.2. Let k1, k2 ∈ K(P)(2) ∩ K(G)(2) be two even positive integers, where k1 and k2 may
equal. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms. If λF (2) = λG(2), then F = c ·G for
some non-zero constant c.

Here, the notation of K(∗)(2) can be found in (26). We remark that K(∗)(2) is a weak version of
the generalized Maeda’s conjecture for Γ2 = Sp(4,Z). In fact, Maeda’s conjecture for Γ1 = SL(2,Z)
would imply that K(P)(2) = {k : k even and k ≥ 10}. Moreover, it is expected that the set K(G)(2)
has the natural density of 1. See [HM97, GM12] for more discussions about Maeda’s conjecture.

In addition, we can also distinguish Hecke eigenforms in each type by using L-functions with
different methods. First, recall that Saito-Kurokawa liftings of level one and weight k ∈ 2Z>0 can be
obtained from elliptic cusp forms of level one and weight 2k−2. More precisely, let f ∈ S2k−2(Γ1) be
a Hecke eigenform, and let πf be the automorphic cuspidal representation of GL(2,A) associated to
f . Here, A is the ring of adeles of Q. Then the resulting Saito-Kurokawa lifting is in Sk(Γ2), denoted
by Ff , and Ff is also a Hecke eigenform; see [Kur78, Maa79] for more details about the classical
Saito-Kurokawa liftings. The normalized spinor L-function of Ff and the normalized L-function of
f are connected by the following relation:

L(s, πFf , ρ4) = ζ(s+ 1/2)ζ(s− 1/2)L(s, πf ), (2)

where ρ4 is the 4-dimensional irreducible representation of Sp(4,C), and πFf is the automorphic
cuspidal representation of GSp(4,A) corresponding to Ff . Let ξ be a primitive Dirichlet character,
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and let χ be the corresponding Hecke character of Q×\A×. Let σ1 be the standard representation
of the dual group GL(1,C) = C×. Then we can define the twisted L-function by

L(s, πFf × χ, ρ4 ⊗ σ1) = L(s+ 1/2, χ)L(s− 1/2, χ)L(s, πf ⊗ χ). (3)

Theorem 1.3. Let k1, k2 be even positive integers and f ∈ S2k1−2(Γ1), g ∈ S2k2−2(Γ1) be normalized
Hecke eigenforms. Suppose that there exists a non-zero constant c such that

L(1/2, πFf × χd, ρ4 ⊗ σ1) = c · L(1/2, πFg × χd, ρ4 ⊗ σ1)

for almost all quadratic Hecke characters χd of Q×\A×, which are corresponding to primitive
quadratic Dirichlet characters ξd of conductor d. Then k1 = k2 and Ff = Fg.

To prove this theorem, it suffices to show that f = g, which is due to [LR97, Theorem B].
Finally, we will distinguish Hecke eigenforms of level one which are non-liftings. Let k1, k2 be

even integers. Let F ∈ S(G)
k1

(Γ2) andG ∈ S(G)
k2

(Γ2) be Hecke eigenforms, and let πF (resp. πG) be the
automorphic cuspidal representation of GSp(4,A) corresponding to F (resp. G). Then we can define
the Rankin-Selberg L-function of F and G, denoted by L(s, πF × πG, ρi ⊗ ρj) with i, j ∈ {4, 5}; see
[PSS14, (271)]. (Note that the L-function here is actually the finite part of L-functions in [PSS14].)
Moreover, L(s, πF × πG, ρi ⊗ ρj) has a pole at s = 1 if and only if i = j, k1 = k2 and F = c ·G for
some non-zero constant c; see [PSS14, Theorem 5.2.3].

Theorem 1.4. Assume the notations above. Suppose that L(s, πF × πG, ρ4 ⊗ ρ4) and L(s, πF ×
πF , ρ4 ⊗ ρ4) satisfy the Generalized Riemann hypothesis. If F is not a scalar multiplication of G,
then there exists an integer

n� (log k1k2)
2(log log k1k2)
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such that λ̃F (n) 6= λ̃G(n). Here, λ̃F (n) = n3/2−k1λF (n) (resp. λ̃G(n) = n3/2−k2λG(n)) is the
normalized Hecke eigenvalue for F (resp. G).

To prove above theorem, we will apply the method in [GH93]. Then combine with Lemma 6.1
and we will conclude Theorem 1.4.
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2 Preliminaries

We let

GSp(4) := {g ∈ GL(4) : tgJg = µ(g)J, µ(g) ∈ GL(1)}, J =

[
1

1
−1

−1

]
. (4)

The function µ is called the multiplier homomorphism. The kernel of this function is the symplectic
group Sp(4). Let Z be the center of GSp(4) and PGSp(4) = GSp(4)/Z. When speaking about Siegel
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modular forms of degree 2, it is more convenient to realize symplectic groups using the symplectic
form J =

[
0 12
−12 0

]
. The Siegel upper half plane of degree 2 is defined by

H2 := {Z ∈ Mat2(C) : tZ = Z, Im(Z) > 0}. (5)

The group GSp(4,R)+ := {g ∈ GSp(4,R) : µ(g) > 0} acts on H2 by

g〈Z〉 := (AZ +B)(CZ +D)−1 for g =
[
A B
C D

]
∈ GSp(4,R)+ and Z ∈ H2. (6)

Let Γ2 = Sp(4,Z). In general, for a positive integer N we let

Γ0(N) :=
{[

A B
C D

]
∈ Sp(4,Z) : C ≡ 0 (mod N)

}
(7)

be the Siegel congruence subgroup of level N . It is clear that Γ2 = Γ0(1).
LetMk(Γ0(N)) be the space of Siegel modular form of weight k with respect to Γ0(N), and let

Sk(Γ0(N)) be the subspace of cusp forms. That is to say, for any function F ∈ Mk(Γ0(N)), it is a
holomorphic C-valued function on H2 satisfying

(
F |kγ

)
(Z) = F (Z) for all γ ∈ Γ0(N). Here,(

F |kg
)
(Z) := µ(g)kj(g, Z)−kF (g〈Z〉) for g =

[
A B
C D

]
∈ GSp(4,R)+ and Z ∈ H2, (8)

where j(g, Z) := det(CZ + D) is the automorphy factor. We remark that this operator differs
from the classical one used in [And74] by a factor. We do so to make the center of GSp(4,R)+ act
trivially.

Let F ∈ Sk(Γ0(N)) be a Hecke eigenform, i.e., it is an eigenvector for all the Hecke operator
T (n), (n,N) = 1. Denote by λF (n) the eigenvalue of F under T (n) when (n,N) = 1. For any prime
p - N , we let αp,0, αp,1, αp,2 be the classical Satake parameters of F at p. It is well known that

α2
p,0αp,1αp,2 = p2k−3. (9)

In particular, let N = 1 and F ∈ Sk(Γ2) be a Hecke eigenform, we can define the L-series

H(s) =

∞∑
n=1

λF (n)

ns
. (10)

This can be written as a Euler product

H(s) =
∏
p

Hp(s) =
∏
p

(
1 +

λF (p)

ps
+
λF (p2)

p2s
+ · · ·

)
(11)

provided <(s) > k. Moreover, one can show that

Hp(s) =
(
1− p2k−4−2s

)
Lp(s, F, spin), (12)

where Lp(s, F, spin) is the local spinor L-factor of F at p and it can be given:

Lp(s, F, spin)−1 = (1− αp,0p−s)(1− αp,0αp,1p−s)(1− αp,0αp,2p−s)(1− αp,0αp,1αp,2p−s). (13)

On the other hand, by [And74, p. 62, 69] one can see that

Lp(s, F, spin)−1 = 1−λF (p)p−s + (λF (p)2−λF (p2)− p2k−4)p−2s−λF (p)p2k−3−3s + p4k−6−4s. (14)
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In this case, we can define the spinor L-function

L(s, F, spin) =
∏
p

Lp(s, F, spin).

The analytic property of the spinor L-function can be found in [And74]. Let αp = p3/2−kαp,0 and
βp = αpαp,1. By comparing (13) with (14), we obtain (also see [PS09, Proposition 4.1])

λF (p) = pk−3/2(αp + α−1p + βp + β−1p ), (15)

λF (p2) = p2k−3
(
(αp + α−1p )2 + (αp + α−1p )(βp + β−1p ) + (βp + β−1p )2 − 2− 1/p

)
. (16)

Let ρ4 be the 4-dimensional irreducible representation of Sp(4,C). In fact, ρ4 is the natural
representation of Sp(4,C) on C4, which is also called the spin representation. For later use, we would
normalize the spinor L-function. More precisely, the normalized spinor L-function L(s, πF , ρ4) is
defined as follows:

L(s, πF , ρ4) = L(s+ k − 3/2, F, spin) =
∞∑
n=1

aF (n)

ns
. (17)

Actually, this is the finite part of the completed L-function of πF , where πF is the automorphic
cuspidal representation of GSp(4,A) associated to F . For more details about the connection between
Siegel modular forms of degree 2 and automorphic representations of GSp(4,A); see [AS01] and
[Sch17, Section 4.2]. Moreover, let λ̃F (n) = n3/2−kλF (n) be the normalized eigenvalues. It follows
that

∞∑
n=1

λ̃F (n)

ns
= ζ(2s+ 1)−1L(s, πF , ρ4). (18)

Note that if F ∈ Sk(Γ0(N)) with N > 1, we still can define the partial spinor L-functions by Euler
products for all primes p not dividing N . In particular, the local factor at p with (p,N) = 1 is
defined in the same way as above.

Similarly, let ρ5 be the 5-dimensional irreducible representation of Sp(4,C). An explicit formula
for the representation ρ5 as a map Sp(4,C) → SO(5,C) is given in [RS07, Appendix A.7]. The
standard L-function associated to F is defined as

L(s, πF , ρ5) =
∏
p

Lp(s, F, std) =

∞∑
n=1

bF (n)

ns
, (19)

where

Lp(s, F, std)−1 = (1− p−s)(1− αp,1p−s)(1− αp,2p−s)(1− α−1p,1p
−s)(1− α−1p,2p

−s). (20)

One can also refer to [Böc85, PS09] for the analytic properties of the standard L-functions.

3 Proof of Theorem 1.1

First, by (12) and (14) we have

λF (p3) = 2λF (p)λF (p2)− λF (p)3 + λF (p)(p2k−3 + p2k−4), (21)
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and

λF (p4) = −λF (p)4 + λF (p)2λF (p2) + λF (p2)2 + λF (p)2p2k−4 + λF (p2)p2k−4 + 2λF (p)2p2k−3− p4k−6.
(22)

Then we can prove the following result:

Theorem 3.1. Let k1, k2 be distinct positive integers larger than 2. Let F ∈ Sk1(Γ0(N)) and G ∈
Sk2(Γ0(N)) be Hecke eigenforms. Then for any prime p not dividing N , we can find i ∈ {1, 2, 3, 4}
such that

λF (pi) 6= λG(pi).

To prove this theorem, we need the following lemma.

Lemma 3.2. Let F ∈ Sk(Γ0(N)) be a Hecke eigenform. Let p - N be a prime. If λF (p) = 0, then

|λF (p2)| < p2k−2 + 2p2k−4.

Proof. By (15)-(16) and λF (p) = 0, we have

λF (p2) = λF (p)2 − p2k−3((αp + α−1p )(βp + β−1p ) + 2 + 1/p)

= p2k−3((αp + α−1p )(αp + α−1p )− 2− 1/p)

= p2k−3(α2
p + α−2p − 1/p).

Observe that αp is just the σ(p) as in [PS09, Theorem 3.2]. In particular, we have 1 ≤ |αp| < p1/2.
Hence, we obtain the desired estimate.

Proof of Theorem 3.1. Assume that there exists a prime p - N such that λF (pi) = λG(pi) for
i = 1, 2, 3, 4; we will obtain a contradiction. More precisely, we consider the following two cases:

(1) If λF (p) 6= 0, then by (21) and λF (pi) = λG(pi) (i = 1, 2, 3), we have

λF (p)(p2k1−3 + p2k1−4) = λG(p)(p2k2−3 + p2k2−4).

This yields the contradiction k1 = k2.
(2) If λF (p) = 0, then λG(p) = 0 by assumption. By Lemma 3.2 we have

|λF (p2)| < p2k1−2 + 2p2k1−4 and |λG(p2)| < p2k2−2 + 2p2k2−4.

Without loss of generality, we assume that k1 ≥ k2 + 1. Since λF (p2) = λG(p2), we have

|λF (p2)| = |λG(p2)| < 2p2k2−2 + p2k2−4. (23)

On the other hand, it follows from (22) and λF (pi) = λG(pi), i = 1, 2, 3, 4, that

λF (p2)p2k1−4 − p4k1−6 = λG(p2)p2k2−4 − p4k2−6 (24)

Then we have λF (p2)(p2k1−4 − p2k2−4) = p4k1−6 − p4k2−6. Multiplying p2 both sides we obtain

λF (p2)(p2k1−2 − p2k2−2) = p4k1−4 − p4k2−4 = (p2k1−2 − p2k2−2)(p2k1−2 + p2k2−2). (25)

It follows that λF (p2) = p2k1−2 + p2k2−2. This equality leads to a contradiction due to (23) and
k1 ≥ k2 + 1.

Then Theorem 1.1 immediately follows from Theorem 3.1 and Lemma 3.3 below.

Lemma 3.3 ([Ghi11, cf. § 2] ). Let N ≥ 1 be a positive integer, then we can find a prime p such
that (p,N) = 1 and p ≤ 2 logN + 2.
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4 Proof of Theorem 1.2

In this section, we only consider Γ2 = Sp(4,Z). Let mk = dimC Sk(Γ2), and let

K(∗)(2) = {k ∈ Z : The characteristic polynomial of Tk(2) for F ∈ S(∗)k (Γ2) is irreducible}, (26)

where S(∗)k (Γ2) is the set of those F ∈ Sk(Γ2) of type (∗) as in (1). Let m
(∗)
k = dimC S

(∗)
k (Γ2).

Evidently, mk = m
(P)
k + m

(G)
k . It is well known that m

(P)
k > 0 only if k ∈ Z≥10 is even and

m
(G)
k > 0 only if k ∈ Z≥20. We also note that m

(P)
k = dimC S2k−2(Γ1), where Γ1 = SL(2,Z).

Proof of Theorem 1.2. We are going to separate into the following three cases.

(1) If F and G both are Saito-Kurokawa liftings, say F ∈ S(P)
k1

(Γ2) and G ∈ S(P)
k2

(Γ2) with

k1, k2 ∈ K(P)(2), then we can write F = Ff and G = Fg, which are lifts from f ∈ S2k1−2(Γ1) and
g ∈ S2k2−2(Γ1), respectively. Recall that if f and g are Hecke eigenforms, then both Ff and Fg are

also Hecke eigenforms. Let T
(1)
2k−2(2) be the Hecke operator on f ∈ S2k−2(Γ1) with Hecke eigenvalue

λf (2), and let Tk(2) be the Hecke operator on Ff ∈ Sk(Γ2) with Hecke eigenvalue λFf (2). Then we
have

λFf (2) = 2k−1 + 2k−2 + λf (2). (27)

Moreover, let P (T
(P)
k (2), t) be the characteristic polynomial of Tk(2) on S(P)

k (Γ2), which is irre-

ducible if k ∈ K(P)(2). For k ∈ K(P)(2) we can see that the characteristic polynomial P (T
(1)
2k−2(2), t)

of T
(1)
2k−2(2) is irreducible as well since P (T

(P)
k (2), t) = P (T

(1)
2k−2(2), t− 2k−1− 2k−2). We can further

assume that f is not a constant multiple of g since the Saito-Kurokawa lifting is injective.

(i) If k1 = k2 = k, then λFf (2) 6= λFg(2) due to the fact that the irreducible characteristic

polynomial P (T
(P)
k (2), t) has distinct roots.

(ii) If m
(P)
k1
6= m

(P)
k2

, then degP (T
(P)
k1

(2), t) 6= degP (T
(P)
k2

(2), t). Recall that both of them are

irreducible, it follows that P (T
(P)
k1

(2), t) and P (T
(P)
k2

(2), t) have distinct roots. Hence, λFf (2) 6=
λFg(2).

(iii) If m
(P)
k1

= m
(P)
k2
≥ 1 and k1 6= k2, it is clear that 2k1 − 2, 2k2 − 2 ≥ 18. Additionally, we can

show that there exists n ≥ 1 such that 2k1 − 2, 2k2 − 2 ∈ {12n+ 6, 12n+ 10, 12n+ 14} since

k1, k2 are even and m
(P)
k1

= m
(P)
k2

. On the other hand, we can show that

TrT
(P)
k1

(2) = m
(P)
k1

(2k1−1 + 2k1−2) + TrT
(1)
2k1−2(2). (28)

Assume that k1 = k2 + l with l > 0. Then by the choice of k1, k2, we know that l ∈ {2, 4}.
Let l = 2m as in [VX18, Corollary 3.4], and so m ∈ {1, 2}. It follows from m

(P)
k1

= m
(P)
k2

and
(28) that

TrT
(P)
k1

(2)− TrT
(P)
k2

(2) = 2k2−2
(
m

(P)
k2

(2k1−k2+1 + 2k1−k2 − 3) + ak2−1,l − 2m+5−k2ck2−1,l

)
,

where ak2−1,l is an integer and ck2−1,l is an odd integer as in the proof of [VX18, Corol-
lary 3.4]. However, we know that m + 5 − k2 ≤ −3 since m ≤ 2 and k2 ≥ 10. Therefore,
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2m+5−k2ck2−1,l is not an integer and hence TrT
(P)
k1

(2) 6= TrT
(P)
k2

(2). By irreducibility of char-

acteristic polynomials TrT
(P)
k1

(2) = TrλFf (2) and TrT
(P)
k2

(2) = TrλFg(2), which implies that
λFf (2) 6= λFg(2).

(2) If F and G both are non-liftings, say F ∈ S(G)
k1

(Γ2) and G ∈ S(G)
k2

(Γ2), we can apply the

similar arguments as in the above case (1). More precisely, if k1 = k2 ∈ K(G)(2), as the characteristic

polynomial of T
(G)
k1

(2) is irreducible by assumption, then all of its roots are distinct. Thus if F 6= c·G
for any non-zero constant c, then λF (2) 6= λG(2). On the other hand, if k1 6= k2, then it follows from

straightforward computations by using [RSY21, Theorem 3.1] that m
(G)
k1

> m
(G)
k2

for any k1 > k2

and k1, k2 ≥ 40. Finally, if k1 6= k2 and m
(G)
k1

= m
(G)
k2

, then for we can just use [BCFvdG17] to see

that TrT
(G)
k1

(2) 6= TrT
(G)
k2

(2) for all small even weights k1, k2 ≤ 38. Hence the assertion follows.
(3) If one of F and G is a Saito-Kurokawa lifting and the other one is non-lifting, say F ∈

S(P)
k1

(Γ2) and G ∈ S(G)
k2

(Γ2). It follows from (15) and (27) that if k1 − k2 ≥ 6, then we must have
λF (2) > λG(2). Next, we only need to consider k1− k2 ≤ 4 cases. Again, by [RSY21, Theorem 3.1]

we can easily to see that m
(P)
k1
6= m

(G)
k2

unless k2 ∈ S := {20, 22, 24, 26, 28, 30, 32}. By [Bre99],
we know that the Hecke eigenvalues λF (n) > 0 for all n. Then by irreducibility of characteristic

polynomials TrT
(P)
k1

(2) = TrλF (2) > 0. On the other hand, for every k2 ∈ S, by [BCFvdG17] we

can see that TrT
(G)
k2

(2) < 0 and so TrλG(2) = TrT
(G)
k2

(2) 6= TrT
(P)
k1

(2). In particular, we have
λF (2) 6= λG(2). Hence the assertion follows.

Since Saito-Kurokawa liftings only happen for even weights, there is no need to discuss the odd
weights situation for cases (1) and (3) in the proof above. However, we still can consider the case
(2), i.e., both of F and G are non-liftings with k1 and k2 being odd integers. In particular, with a
similar argument, we can show the following result.

Corollary 4.1. Let k1, k2 ∈ K(G)(2) be two odd positive integers, where k1 and k2 may equal. Let
F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms. If λF (2) = λG(2), then F = c · G for some
non-zero constant c.

We note that our approach cannot apply for the case that k1 and k2 have the different parity. It
would be interesting to work out a general result of Theorem 1.2 without any restriction of weights.

5 Proof of Theorem 1.3

Proof of Theorem 1.3. The proof of the theorem is based on [LR97, Theorem B]. It suffices to
assume that d < 0. For a Saito-Kurokawa lifting Ff , by (3) we have

L(1/2, πFf × χd, ρ4 ⊗ σ1) = L(0, χd)L(1, χd)L(1/2, πf ⊗ χd),

where σ1 is the standard representation of the dual group C×. By the well known result of Dirichlet,
we have L(1, χd) 6= 0. Then by the functional equation of L(s, χd), we can see that L(0, χd) 6= 0.
(We have d < 0 and hence ξd(−1) = −1.) This gives

L(1/2, πf ⊗ χd) = c · L(1/2, πg ⊗ χd)
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for almost all quadratic Hecke characters χd of Q×\A×, which are corresponding to primitive Dirich-
let quadratic characters ξd of conductor d < 0. Recall that f is of weight 2k1− 2 and g is of weight
2k2−2 with k1, k2 even, then the root numbers of the automorphic cuspidal representation associated
to f and g are −1. Similar to [LR97, Theorem B], we also have the set

Dω = {d : ωd > 0, and d ≡ v2 (mod 4M) for some v coprime to 4M and M is an integer},

where ω is the root number. This is exactly our case since we assume that d < 0 and ω = −1. In
this case, for any d ∈ Dω, we can find a non-zero constant c such that

L(1/2, πf ⊗ χd) = c · L(1/2, πg ⊗ χd),

By the virtual of [LR97, Theorem B], we have k1 = k2 and f = g. Therefore, Ff = Fg.

6 Proof of Theorem 1.4

Proof of Theorem 1.4. We would consider the following integral

1

2πi

∫
(2)

(
xs−

1
2 − x

1
2
−s

s− 1
2

)2(
−Z

′

Z
(s)

)
ds,

where later we will choose Z(s) to be L(s, πF × πF , ρ4 ⊗ ρ4) and L(s, πF × πG, ρ4 ⊗ ρ4). Assume
that

−L
′

L
(s, πF × πF , ρ4 ⊗ ρ4) =

∞∑
n=1

ΛF×F (n)

ns
and − L′

L
(s, πF × πG, ρ4 ⊗ ρ4) =

∞∑
n=1

ΛF×G(n)

ns
.

Following the idea of [GH93], for x > 0 we can show that

2
∑
n<x2

ΛF×F (n)

n
1
2

log

(
x2

n

)
= 8(x− 2 + x−1)− 4

∑
γ

sin2(γ log x)

γ2
+ J1, (29)

where 1
2 + iγ runs over the non-trivial zeros of L(s, πF × πF , ρ4 ⊗ ρ4) and

J1 =
1

2πi

∫
(1/2)

(
G′1
G1

(s) +
G′1
G1

(1− s)
)(

xs−
1
2 − x

1
2
−s

s− 1
2

)2

ds.

Here, G1(s) is the archimedean part of L(s, πF × πF , ρ4 ⊗ ρ4); see Proposition A.3 with k1 = k2.
Note that we moved the integration line to Re(s) = 1/2 since there exist no poles of G1(s) when
1/4 ≤ Re(s) ≤ 3/4 by Proposition A.3 in Appendix A.

Similarly, in the case of L(s, πF × πG, ρ4 ⊗ ρ4), we have

2
∑
n<x2

ΛF×G(n)

n
1
2

log

(
x2

n

)
= −4

∑
γ′

sin2(γ′ log x)

(γ′)2
+ J2, (30)
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where 1
2 + iγ′ runs over the non-trivial zeros of L(s, πF × πG, ρ4 ⊗ ρ4) and

J2 =
1

2πi

∫
(1/2)

(
G′2
G2

(s) +
G′2
G2

(1− s)
)(

xs−
1
2 − x

1
2
−s

s− 1
2

)2

ds.

Here, G2(s) is the archimedean part of L(s, πF × πG, ρ4 ⊗ ρ4). By [IK04, Proposition 5.7], we can
show that ∑

γ

sin2(γ log x)

γ2
,
∑
γ′

sin2(γ′ log x)

(γ′)2
� log(k1k2)(log x)2.

By Stirling’s formula, we can show that J1 and J2 are also bounded by

O(log(k1k2)(log x)2).

Suppose that ΛF×F (n) = ΛF×G(n) for all n < x2. Subtracting (30) from (29) implies

0 = 8(x− 2 + x−1) +O((log k1k2)(log x)2). (31)

This will give a contradiction when x� (log k1k2)(log log k1k2)
2. That is, if F is not a multiple of

G, then we can find a sufficiently large C such that, for some integer n ≤ C(log k1k2)
2(log log k1k2)

4,
ΛF×F (n) 6= ΛF×G(n). Then Theorem 1.4 can be deduced by the following lemma.

Lemma 6.1. Assume the notations above. Suppose that we can find A such that ΛF×F (n) 6=
ΛF×G(n) for some n ≤ A. Then we can find n ≤ A such that aF (n) 6= aG(n). Moreover, for such
n ≤ A we have λ̃F (n) 6= λ̃G(n).

Proof. As for the first assertion, notice that ΛF×F (n) and ΛF×G(n) are arithmetic functions sup-
ported on prime powers. So there exist a prime number p and a positive integer r such that pr ≤ A,
and ΛF×F (pr) 6= ΛF×G(pr). We consider two cases: when p ≥ bA1/2c + 1 and p ≤ bA1/2c. Here,
bxc denotes the greatest integer less than or equal to x.

In the first case, p2 > A and hence ΛF×F (p) 6= ΛF×G(p). It can be shown that ΛF×F (p) =
aF (p)2 log p and ΛF×G(p) = aF (p)aG(p) log p. Therefore, we have aF (p) 6= aG(p).

In the second case, we prove by contradiction. Suppose that aF (n) = aG(n) for n ≤ A. Then
for p ≤ bA1/2c, we have aF (pi) = aG(pi) for i = 1, 2. This implies that F and G have the same
Satake parameters at p (up to permutation), which can be obtained by (18) and (15)-(16). This
shows that ΛF×F (pr) = ΛF×G(pr) for any r, which is a contradiction.

The second assertion immediately follows from the relation between aF (n) and λ̃F (n); see (18).

Remark 6.2. Suppose that

L(s, πF , ρ5) =

∞∑
n=1

bF (n)

ns
and L(s, πG, ρ5) =

∞∑
n=1

bG(n)

ns
.

Assume that L(s, πF × πG, ρ5 ⊗ ρ5) and L(s, πF × πF , ρ5 ⊗ ρ5) satisfies the Generalized Riemann
Hypothesis. A similar argument will show: if F is not a scalar multiplication of G, then there exists
an integer

n� (log k1k2)
2(log log k1k2)

4

such that bF (n) 6= bG(n). Indeed, a direct calculation will show that, {bF (pr)}∞r=1 will determined
by {bF (p), bF (p2)} and hence we can obtain a result similar to the first assertion as in Lemma 6.1.
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Appendix A: Archimedean factors associated to certain L-functions

In this section, we would briefly discuss the calculation of the archimedean factors associated to the
L-functions in Sect. 6.

Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms. Then we can associate the automorphic
cuspidal representations πF (resp. πG) for F (resp. G) of GSp(4,A). For πF , we can associate the
completed spinor L-function and the completed standard L-function, denoted by Λ(s, πF , ρ4) and
Λ(s, πF , ρ5), respectively. Moreover, via the Langlands transfer (see [PSS14, § 5.1]), we can find
ΠF

4 (resp. ΠF
5 ), which is an automorphic cuspidal representation of GL(4,A) (resp. GL(5,A)) such

that
Λ(s, πF , ρ4) = Λ(s,ΠF

4 ) and Λ(s, πF , ρ5) = Λ(s,ΠF
5 ).

In this case, the Rankin-Selberg L-function Λ(s, πF × πG, ρ4 ⊗ ρ4) and Λ(s, πF × πG, ρ5 ⊗ ρ5) is
defined by the Rankin-Selberg convolutions on GL(4)×GL(4) and GL(5)×GL(5), respectively, i.e.,

Λ(s, πF × πG, ρ4 ⊗ ρ4) = Λ(s,ΠF
4 ×ΠG

4 ) and Λ(s, πF × πG, ρ5 ⊗ ρ5) = Λ(s,ΠF
5 ×ΠG

5 ). (32)

To calculate the associated archimedean factors, we recall some basic facts regarding the real Weil
group WR = C× t jC×. Here, the multiplication on C× is standard, and j is an element satisfying
j2 = −1 and jzj−1 = z̄ (complex conjugation) for z ∈ C×. More precisely, we are considering repre-
sentations of WR, which are continuous homomorphisms WR → GL(n,C) for some n with the image
consisting of semisimple elements. By [Kna94], every finite-dimensional semisimple representation
of WR is completely recucible, and each irreducible representation is either one- or two-dimensional.
The complete list of one-dimensional representations is as follows:

ϕ+,t : re
iθ 7−→ r2t, j 7→ 1, (33)

ϕ−,t : re
iθ 7−→ r2t, j 7→ −1, (34)

where t ∈ C, and we write any non-zero complex number z as reiθ with r ∈ R>0 and θ ∈ R/2πZ.
The two-dimensional representations are precisely

ϕ`,t : re
iθ 7→

[
r2tei`θ

r2te−i`θ

]
, j 7→

[
(−1)`

1

]
, (35)

where ` ∈ Z>0 and t ∈ C. And the corresponding L-factors, i.e., the archimedean factors, are given
as follows:

L∞(s, ϕ) =


ΓR(s+ t) if ϕ = ϕ+,t,

ΓR(s+ t+ 1) if ϕ = ϕ−,t,

ΓC(s+ t+ `
2) if ϕ = ϕ`,t.

(36)

Here,

ΓR(s) := π−s/2Γ
(s

2

)
, ΓC(s) := 2(2π)−sΓ(s), (37)

where Γ(s) is the usual gamma function. By a direct calculations we have the following lemma:

Lemma A.1. For `, `1, `2 ∈ Z>0 and t1, t2 ∈ C, we have

ϕ+,t1 ⊗ ϕ+,t2 = ϕ−,t1 ⊗ ϕ−,t2 =ϕ+,t1+t2 (38)
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ϕ+,t1 ⊗ ϕ−,t2 = ϕ−,t1 ⊗ ϕ+,t2 =ϕ−,t1+t2 (39)

ϕ±,t1 ⊗ ϕ`,t2 =ϕ`,t1+t2 (40)

ϕ`1,t1 ⊗ ϕ`2,t2 =

{
ϕ`1+`2,t1+t2 ⊕ ϕ|`1−`2|,t1+t2 if `1 6= `2,

ϕ`1+`2,t1+t2 ⊕ ϕ+,t1+t2 ⊕ ϕ−,t1+t2 if `1 = `2.
(41)

Remark A.2. Recall that ΓC(s) = ΓR(s)ΓR(s+ 1), the second case in (41) looks precisely like the
first case in (41), if we allow `1 = `2.

For our purpose, we will only consider the case t = 0; in this case, we write ϕ± instead of ϕ±,0
and ϕ` instead of ϕ`,0. It follows from [Sch17, § 3.2] (observing that λ1 = k1 − 1 and λ2 = k1 − 2)
and [PSS14, Theorem 5.1.2] that the L-parameter of ΠF

4 at the archimedean place is given by:

ϕ2k1−3 ⊕ ϕ1. (42)

Proposition A.3. Assume the notations above. The archimedean place of L(s, πF × πG, ρ4 ⊗ ρ4)
is given by:

ΓC (s+ k1 + k2 − 3) ΓC (s+ k1 − 1) ΓC(s+ k2 − 1)ΓC (s+ k1 − 2) ΓC (s+ k2 − 2)

ΓC(s+ 1)ΓC(s+ |k1 − k2|)ΓR(s)ΓR(s+ 1).

Proof. Without of loss of generality, we can assume that k1 ≥ k2. The associating L-parameter at
the archimedean place is

(ϕ2k1−3⊕ϕ1)⊗ (ϕ2k2−3⊕ϕ1) = (ϕ2k1−3⊗ϕ2k2−3)⊕ (ϕ2k1−3⊗ϕ1)⊕ (ϕ2k2−3⊗ϕ1)⊕ (ϕ1⊗ϕ1). (43)

Using Lemma A.1, then (43) becomes{
ϕ2(k1+k2)−6 ⊕ ϕ2(k1−k2) ⊕ ϕ2k1−2 ⊕ ϕ2k1−4 ⊕ ϕ2k2−2 ⊕ ϕ2k2−4 ⊕ ϕ2 ⊕ ϕ+ ⊕ ϕ− if k1 > k2,

ϕ4k−6 ⊕ ϕ+ ⊕ ϕ− ⊕ ϕ2k−2 ⊕ ϕ2k−4 ⊕ ϕ2k−2 ⊕ ϕ2k−4 ⊕ ϕ2 ⊕ ϕ+ ⊕ ϕ− if k = k1 = k2.

Hence the desired result follows from the Remark A.2 above.

On the other hand, by the construction of the standard L-function, we have that the L-parameter
of ΠF

5 is
ϕ2k1−2 ⊕ ϕ2k1−4 ⊕ ϕ+. (44)

Here, we note that k1 ≥ 2; see [Sch17, Table 5]. A similar argument as in the proof of Proposition A.3
implies:

Proposition A.4. Assume the notations above. The archimedean place of Λ(s, πF × πG, ρ5 ⊗ ρ5)
is given by:

ΓC (s+ k1 + k2 − 2) ΓC (s+ |k1 − k2|)2 ΓC (s+ k1 + k2 − 3)2 ΓC (s+ |k2 − k1 − 1|) ΓC (s+ k1 − 1)

ΓC (s+ |k1 − k2 − 1|) ΓC (s+ k1 + k2 − 4) ΓC (s+ k1 − 2) ΓC (s+ k2 − 1) ΓC (s+ k2 − 2) ΓR(s).

Again, by Remark A.2 we can write ΓC (s+ 0) as ΓR (s) ΓR (s+ 1) if happens.
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